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By means of a Hermite polynomials expansion in velocity space of the distribution 
function, the two-dimensional Vlasov equation is solved numerically by applying a multistep 
technique. We first study the case of a two-dimensional strongly nonlinear Landau damping, 
where a large amplitude oscillation is initially applied to the system. A second case is 
considered where an initially stable oscillation is applied to two-dimensional counter- 
streaming plasmas. The time evolution of these systems is studied and the performance 
of the numerical code is analyzed. 

1. INTRODUCTION 

A multistep technique for the numerical solution of a two-dimensional unmagnetiz- 
ed Vlasov equation has been recently presented [l], where preliminary results ob- 
tained by studying the two-dimensional free streaming case and the linearized Vlasov 
equation have been reported. It is the purpose of the present work to analyze the 
performance of the numerical code developed when it is applied for the solution of the 
nonlinear two-dimensional Vlasov equation. Two cases will be considered because 
of their physical relevance as well as to test the numerical code. We first study the 
time evolution of a two-dimensional strongly nonlinear Landau damping, when a 
large amplitude oscillation is initially applied to the system. The second case studied 
involves nonlinear plasma oscillations in two-dimensional counter-streaming plasmas 
when an initially decaying two-dimensional large amplitude oscillation is applied 
to the system. Linear theories predict the initial decay of a wave whose phase velocity 
lies on the negative slope of the distribution function. The additional effect of non- 
linearly grown waves, especially when a large initial perturbation is applied, is a 
problem which is difficult to tackle theoretically. This effect is studied here by numeric- 
al methods and in our present case it is found that nonlinearly excited one-dimensional 
modes dominate the final state of the system. 

Details on the numerical code developed have been given in [l]. In Section 2 we 
briefly indicate the main steps of the technique used in order to introduce the notation, 
and we also test the effect of the pseudocollision operator formally added to the 
VIasov equation to eliminate the recurrence effect [I]. In Sections 3 and 4 we present 
the results obtained from the study of the strongly nonlinear Landau damping case 
and the streaming plasmas case. Section 5 will present our conclusion. 
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2. THE PSEUDOCOLLISION OPERATOR 

We are solving the dimensionless equation 

g+ v, g + v, $; + Ez(x, y, t) g + E&G YP t) g = * 
2 

supplemented with Poisson’s equation 

‘+++Jf= fdvtdv,-1. 
-cc 

The distribution function is expanded in velocity space using the expansion with the 
Hermite polynomials H&U,) and H&v,) 

f(x, Y, L’cc 2 v, 3 t) = & f  g h,h,b,,,(x, y, t) &(v,) H,~(z’y)e-(1/2)(~z”+~~z). (3) 
v-o &L=o 

When the series in Eq. (3) is inserted in Eqs. (I), (2), and the coefficients for the 
Hermite polynomials are collected, one obtains the infinite system of differential 
equations 

ab -$ + pv [& @v-l., + bv+l.J - Et&, Y, OLu] 

+ P,, [; @v.u-1 + bv.u+J - E,k Y, t&u-l] = 0, (4) 

W = 1 - bo,o(x, Y, t), (5) 

where the potential 4 is such that the electric field E = -04. In Eq. (4) we have set 
pv = /r-,/h, and the py are defined by the recursion relation 

PvPv+1 = LJ + 1. (6) 

Similar relations also apply to the coefficients pp . 
Equation (4) is integrated numerically by splitting the equation into two parts and 

integrating it alternatively in the x and the y directions using a leapfrog scheme 
previously developed for the one-dimensional case [2-4]. To achieve the numerical 
solution, the infinite system in Eq. (4) is truncated at, say, v = N, and ,U = iV, by 
arbitrarily setting 

biv,,~,(X, Y, 1) = 0. (7) 

This truncation results in a recurrence effect, which can be eliminated by formally 
adding a pseudocollision operator to the right-hand side of Eq. (1). We use an operator 
of the form [ 1 ] 

xc(v)2~+y + 7pc(v)2~f’f (8) 
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where h and 77 are constants, P is an integer, C(U) is the two-dimensional Fokker- 
Planck operator 

a 
au) = K ( 

a 
Lb + a23, 1 

a 
+ au, ( 

a ~ - 
'w+ au, -) 

and 

It is essential to test the effect of the operator in (8) on the solution, and at the same 
time one effects a further check to our numerical code. For this purpose Eqs. (I), 
(2) were solved with the initial condition 

where 
j-(x, Y, u, , VW > 0) = h(4z , VW) g(x, Y> (11) 

and 
g(x, y) = 1 + A cos k,x cos k,y. (13) 

We choose k, = k, = 0.25 and A = 0.05. These conditions correspond to the 
presence of the two Fourier modes Ezk (0.25, 0.25) and Euk (0.25,0.25) at time t = 0. 

The calculations were carried up to t = 14.5, using a time step At = 0.05, a mesh 
of 16 x 16 points (in order to provide an adequate representation of the higher 
modes) and 30 x 30 polynomials. We also used h = 18(2 x 28)-3, 7 = 5.5(2 x 28)-3, 
and r = 1. The result for Ezk is shown in Fig. 1. The two modes E&0.25, 0.25) and 
E&0.25, 0.25) remained exactly equal in magnitude while the excited higher modes 
remained smaller than the fundamental modes by at least one order of magnitude. 

0 5 10 15 
TIME T 

FIG. 1. Plot of the logarithmic value of Ezk against time, for the initial condition given in Eq. (11). 
The calculated values of w/w, and y/ w9 are, respectively, 1.208 and 0.0338. 
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The relative error in energy conservation was slightly less than 3 x lo-*, and it 
took about 400 minutes of execution time (CPU time) for the calculations, using an 
IBM 370/168. The calculated real value of the frequency is w/w, = 1.208 and the 
imaginary value (averaged over several peaks) is y/w= = 0.0338, while the correspond- 
ing theoretical values are w/wD = 1.220 and y/w9 = 0.0343, for k = (kz2 + ky2)li2 = 
0.3535. Hence, the agreement is very good and indicates that the damping constants 
X and 77 are affecting the solution only slightly. The present values of X and 7 are 
used for the calculations presented in Sections 3 and 4. 

3. STRONGLY NONLINEAR LANDAU DAMPING 

Having tested the correctness of our scheme and the effect of the damping constants 
on the solution, attention is now directed to the case of a strongly nonlinear Landau 
damping. We take the same values offo and g(x, y) as are given in Eqs. (12) and (13), 
but with A = 0.5. The results are presented in Figs. 2-5. The two modes E,, (0.25, 
0.25) and Evk (0.25, 0.25) remained exactly equal (up to the eighth decimal) for all 
values of t up to f = 40.0; this was also the case for the higher diagonal modes 
& (0.5,0.5) and E,, (0.5,0.5), and for the modes Ezs (0.75,0.75) and E,, (0.75,0.75). 
There was a very slight difference, occurring at fourth decimal (representing about 
0.05 %) between the nondiagonal modes Ezk (0.5,O) and Eve (0, 0.5), and the modes 
Ezk (0.75,0.5) and EYk (0.5, 0.75) (these four latter modes remained smaller in magni- 
tude than the other modes by at least one order of magnitude or more). Figure 2 gives 
the plot, on a logarithmic scale of Ezk (0.25, 0.25) against time. A damping, which is 
stronger than the linear damping obtained in Fig. 1, is obserbed at the early evolution 
of the system; then a subsequent growth is observed up to t = 30. This behavior is 
similar to what one gets for the one-dimensional strongly nonlinear Landau damping 

‘t 
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FIG. 2. Plot of the logarithmic value of Ezk (0.25, 0.25) against time, with the initial condition 
given in Eq. (Il), with A = 0.5. 
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FIG. 3. Plot of the logarithmic value of E,, (0.5,O) against time. Same initial condition as in Fig. 2. 

TIME T 

FIG. 4. Plot of the logarithmic value of Ezk (0.5,0.5) against time. Same initial condition as in 
Fig. 2. 

[2, 31. The mode, however, does not seem to saturate and shows, rather, an oscillation 
from t = 30 to 40. The slight irregularity in the oscillation pattern which appears 
about t = 34 (and which is also apparent for the mode EsA (0.5,O) in Fig. 3) is probably 
due to small recurrence effects which have not been completely controlled by the 
pseudocollision operator. Neither for the fundamental mode, nor for the higher 
modes, in Figs. 3-5, does a steady state appear to have been reached, at 1 = 40. 
With the exception of the mode Ezk (0.5,0.5) in Fig. 4 (which seems to reach together 
with E,, (0.5, 0.5) at t = 40, a level close to the fundamental level for EJ.k (0.25, 
0.25) in Fig. 2) all the higher modes remained smaller than the fundamental modes 
by at least one order of magnitude. The two diagonal modes E,, (0.5, 0.5) and E,, 
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TIME T 

FIG. 5. Plot of the logarithmic value of EzK (0.75,0.75) against time. Same initial condition as 
in Fig. 2. 

(0.75, 0.75) (in Figs. 4 and 5, respectively) show a similar evolution pattern in time, 
with local minima near t = 9 and t = 30, and a local maximum around t = 25. 

The relative error in total energy conservation was about 1O-2 at t = 30 (just 
before the slight distorsion due to recurrence appears). These results have been 
obtained using a mesh of 16 x 16 points and 30 x 30 polynomials, i.e., the equivalent 
of (480)2 particles. The total time of execution (CPU time) was close to 18 hours and 
48 minutes, using an IBM 370/168. This is equivalent to a computational effort of 
about 0.4 msec per “particle” per time step (dt = 0.05). 

4. COUNTER-STREAMING PLASMAS 

In this case we study the time evolution of an initially decaying large amplitude 
oscillation in counter-streaming plasmas. The initial distribution function is taken 
as in Eq. (1 l), where& is the double peaked Maxwellian 

(14) 

and g(x-, y) is the same as in Eq. (13). We have used in this case A = 0.25. The 
electric field components E, and E, have, at t = 0, the Fourier components Ezk 
(0.25, 0.25) and E,, (0.25, 0.25), respectively. These components are equal at t = 0 
and remained equal for all time t (together with their complex conjugates). 

Figure 6 shows the plot of the logarithm of the absolute value of the mode E,, 
(0.25, 0.25), excited at t = 0. It indicates at the beginning that the system is oscillat- 
ing at two linearly independent frequencies having a relative phase of 180” and 
decaying exponentially. At this early evolution of the system most of the energy is 
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FIG. 6. Plot of the logarithmic value of E,, (0.25,0.25) against time, with the initial condition in 
Eq. (14) with A = 0.25. 

concentrated in the fundamental modes EEk (0.25, 0.25) and Eyk (0.25, 0.25), so that 
the total electric energy in Fig. 8 shows clearly on a linear scale the exponential decay 
in time accompanied by oscillations at the two frequencies (called mode 1 and mode 
2 on Fig. 8). The period of oscillation of these two modes was exactly equal to 9.2 wpl. 
For a perturbation with a wavenumber k = 0.25 x 21j2, this leads to a phase velocity 
well on the negative slope of the distribution function as given by Eq. (14) and, 
hence, implies damping. The damping rates, averaged over the first peaks, were 
respectively, 0.0626 and 0.0655 (the results are not accurate enough to determine 
whether the damping rates are exactly equal). As was previously mentioned the mode 
E,, (0.25, 0.25) remained exactly equal to Ezk: (0.25, 0.25) for all time t (this equality 
was verified up to the eighth decimal). The diagonal modes E,, (0.5, 0.5), Ezb (0.75, 
0.75) were also excited and remained, respectively, equal to the diagonal modes 

TIME T 

FIG. 7. Plot of the logarithmic value of Ezk (0.5,O) against time. Same initial condition as in Fig. 6. 
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TIME T 

FIG. 8. Plot of the electric energy against time. Same initial condition as in Fig. 6. 

E,, (0.5, OS), Eyk (0.75, 0.75) for all time t (they were however, at least two order of 
magnitudes smaller than the fundamental mode Ezk). The history of the nondiagonal 
modes is different. Figure 7 shows the evolution of the one-dimensional mode EsK 
(0.5, 0). This nonlinearly excited mode shows a one-dimensional instability which, 
for counter-streaming plasmas, is characteristic of a perturbation whose phase 
velocity falls on the positive slope of the distribution function. This perturbation 
drives the electric energy wave in Fig. 3 to a typical two-stream instability behavior 
characterized by an exponential growth for t > 15 followed by saturation, and, then, 
trapped particles oscillations. That these trapped particle oscillations are due to the 
one-dimensional mode Ezk (0.5, 0) can be easily verified by considering the peaks 
and valleys of the electric field energy curve in Fig. 8 which, for t > 20, closely 
follow those of the curve of the mode Ezk (0.5, 0) (which has been plotted with a 
magnified scale in the lower box of Fig. 7). Figure 9 shows another one-dimensional 
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FIG. 9. Plot of the logarithmic value of Evk (0,0.5) against time. Same initial condition as in Fig. 6. 
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mode, the mode E,, (0, 0.5). This mode has a very small initial growth followed by a 
continuous decay; as can be easily verified, the evolution of the two nondiagonal 
modes EzB (0.5, 0) and Egk (0, 0.5) is totally different. Finally, Fig. 10 shows a one- 
dimensional mode excited in the x direction, the mode E,, (0.25, 0). It shows a 
continuous growth from a very low initial level; this mode, however, and all the other 
modes, remain at t = 50 at least two order of magnitudes lower than the mode 
E rk (0.5, 0). 

I I I I 
0 IO 20 30 40 f  

TIME T 

FIG. 10. Plot of the logarithmic value of E,, (0.25,O) against time. Same initial condition as in 
Fig. 6. 

At t = 50, after 800 time- steps, the relative error in energy conservation was 
1.5 x 10-3. The execution time (CPU time) was about 23 hours, using an IBM 370/ 
168. These calculations were done with 30 x 30 polynomials and a mesh of 16 x 16 
points, i.e., the equivalent of (480)2 “particles.” This corresponds to a computational 
effort of about 0.4 msec per particle per time-step (At = 0.05). 

5. CONCLUSION 

In the present work, we have tested a numerical code for the solution of a two- 
dimensional Vlasov equation, using a multistep technique [l]. The results indicate 
that the code in its present form is accurate. A typical figure for the relative error in 
energy conservation for the solution of nonlinear problems is 1O-2 to 10-3. Comparison 
with available theoretical results from the linear theory gives very good agreement 
(the error is about 1 % for the result in Fig. 1). Nonlinear effects have been studied 
with a matrix of 30 x 30 polynomials and a mesh of 16 x 16 points, i.e., the equiva- 
lent of (480)2 particles. This is equivalent to the simulation of one-dimensional non- 
linear effects with 480 particles, which is the optimized result reported for the one- 
dimensional case in [2-4]. The typical computational effort is about 0.4 msec per 
particle per time step (using a time-step dt = 0.05, and an IBM 370/168). 
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The code has been applied to study the time evolution of a two-dimensional strong- 
ly nonlinear Landau damping, and the time evolution of a decaying oscillation in 
counter-streaming plasmas. The physical results are interesting and new. In both 
cases, the corresponding diagonal modes in the x and y directions remained exactly 
equal for all time. The case of a strongly nonlinear Landau damping, when a large 
amplitude oscillation is initially applied to the system, shows the fundamental mode 
growing again after the initial decay (see Fig. 2), a behavior indicating the formation 
of a positive slope in the distribution function. The case of an initially decaying two- 
dimensional oscillation in counter-streaming plasmas shows a single one-dimensional 
mode, excited nonlinearly, driving a two-stream instability and giving, as a final 
state, a behavior typical of one-dimensional trapped particle oscillations; this asymp- 
totic behavior differs from the results obtained in earlier particle simulations [5], 
where several initially unstable two-dimensional modes lead to an asymptotic solution 
of the electric field energy showing a smooth decay in time after saturation, without 
trapped particle oscillations. This difference is due to the fact that in the present case, 
we have a single one-dimensional mode dominating the asymptotic state of the system. 

In addition to the results discussed in Fig. 1, testing the code for different mesh 
sizes has been reported in [l] for the linear case. This has not been effected for the 
nonlinear problem, but recent results obtained with a new code [6] using splitting 
schemes, do show very good agreement with the present code for the nonlinearly 
grown waves. 

ACKNOWLEDGMENTS 

The authors are grateful to the “Direction de I’Enseignement SupCrieur” for special permission 
to use the IBM 370/168 of the Ministry of Education of the Provincial Government of Quebec 
(SIMEQ) as well as to the SIMEQ authorities, who made it possible to perform the present calcula- 
tions. M. Shoucri is grateful to Professor G. Knorr for many fruitful discussions. 

REFERENCES 

1. M. SHOUCRI AND R. R. J. GAGN& J. Computational Phys. 23 (1977), 242. 
2. M. SHOUCRI AND R. R. J. GAGNI?, J. Computational Phys. 21(1976), 238. 
3. G. KNORR, J. Computational Phys. 13 (1973), 165. 
4. M. SHOUCRI AND G. KNORR, J. Computational Phys. 14 (1974), 84. 
5. R. L. MORSE AND C. W. NIELSON, Phys. Rev. Lett. 23 (1969), 1087. 
6. M. SHOUCRI AND R. R. J. GAGNJ?, Splitting schemes for the numerical solution of a two-dime+ 

sional Vlasov equation, J. Computational Phys., in press. 


